Coupled Transpired and Discretely Injected Films, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

NASA, and all users of turbomachinery, continuously requires improvements in engine durability and efficiencies. As combustion engineers push turbine inlet temperatures to new extremes, cooling designers are faced with increasing heat loads and less available coolant usage. Surface cooling techniques such as film cooling have proven invaluable in this quest. Films generated by forcing the coolant to bleed through a porous substrate have been shown to perform substantially better than discrete film injection in a thermal sense. However, the associated aerodynamic penalties limit the application. On the other hand, discretely injected films have drawbacks as well, including nonuniform coolant profiles significant mixing with the hot working fluid, lowering their effectiveness. Spectral Energies, LLC and the University of Central Florida propose a novel, low risk approach to surface cooling wherein traditional discrete film holes are embedded within a transpiring porous strip. The motivation behind this approach is multi-faceted, with the ultimate goal of developing a cooling arrangement which possesses the thermo-mechanical benefits of a transpired film, the aerodynamic benefits of discrete film injection, and mixing characteristics that are some compromise of the two.

Primary U.S. Work Locations and Key Partners

Coupled Transpired and Discretely Injected Films, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Coupled Transpired and Discretely Injected Films, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Spectral Energies, LLC	Lead Organization	Industry Small Disadvantaged Business (SDB)	Dayton, Ohio
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations

Ohio

Project Transitions

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138064)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Spectral Energies, LLC

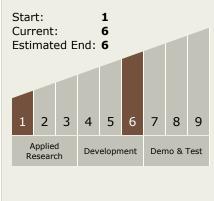
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Sivaram Gogineni

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Coupled Transpired and Discretely Injected Films, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - — TX14.2 Thermal Control
 Components and Systems

 — TX14.2.2 Heat
 Transport

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

